

ÓRGANO OFICIAL DE LA UNIVERSIDAD NACIONAL DE INGENIERÍA

UNIVERSIDAD NACIONAL DE INGENIERÍA Escuela Central de Posgrado

Se invita a la comunidad universitaria a participar de la videoconferencia de la defensa pública virtual de la Tesis de DOCTORADO EN CIENCIAS CON MENCIÓN EN MATEMÀTICA, del M.Sc. Alessandri Canchoa Quispe, a realizarse el día viernes 04 de junio de 2021, a las 11 h 30.

TÍTULO DE LA TESIS:

"AJUSTE ORTOGONAL DE DATOS A UNA PARÁBOLA"

ASESOR LOCAL:
Dr. ELADIO TEÓFILO OCAÑA ANAYA
Facultad de Ciencias
Universidad Nacional de Ingeniería

ASESOR EXTERNO

PhD. SERGIO CAMIZ

Departamento di Matematica Istituto "Guido Castelnuovo"

Università degli Studi di Roma "La Sapienza"

RESUMEN

Proponemos un enfoque para el ajuste ortogonal a una parábola de una nube de puntos con la finalidad de construir coordenadas generalizadas que preservan la inercia. La distancia de un punto P a su proyección ortogonal Q sobre una parábola dada y la longitud del arco de la parábola desde Q a su vértice pueden ser utilizadas como coordenadas generalizadas para identificar la posición del punto en el plano. En principio obtenemos un método directo para determinar la proyección y la distancia de un punto a una parábola. Desarrollamos un algoritmo finito, analizando la condición de una cierta proyección y los cálculos asociados evitando la pérdida de dígitos significativos.

Dado una nube de puntos $\{(x_j, y_j): j = 1, 2, \dots, m\}$, desarrollamos y resolvemos el siguiente problema

P: Determinar la parábola $C_{z=(a,b,c,\theta)}$ tal que $\sum_{j=1}^{m} d^2\left((x_j,y_j),C_z\right)$ sea mínima, donde C_z : Y = aX² tiene vértice V = (x,y) y , θ es el ángulo (de rotación) antihorario medido desde el semieje negativo de las ordenadas al eje focal de la parábola. Aplicando el método propuesto de la proyección de un punto a una parábola, proponemos un método numérico para solucionar este problema.

EDITOR: SECRETARIO GENERAL UNI IMPRENTA DE LA EDUNI